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Abstract. Water of constant finite depth fills a semi-infinite channel, with a wavemaker, W, at one end. The 
generation of small-amplitude gravity waves by harmonic oscillations of W leads to a linear boundary-value problem 
for a velocity potential, 4). For vertical, plane wavemakers, there is a theory due to Havelock in which t h is 
represented as a convergent series of eigenfunctions, with coefficients determined by the boundary condition on W. 
We show that the same representation (with different coefficients) can also be used for some wavemakers with other 
shapes; the allowable geometries and forcings are determined. This is a hydrodynamic analogue of the so-called 
Rayleigh hypothesis in the theory of gratings. Similar results obtain for the hydrodynamic loading of dams due to 
short-duration earthquakes. 

1. Introduction 

The method of separation of variables is often used to solve boundary-value problems in 
rectangular regions. For semi-infinite regions, given in Cartesian coordinates (x, y) by x/> 0 
and 0 ~< y ~< h, it usually leads to eigenfunction expansions, where each eigenfunction satisfies 
the governing partial differential equation (herein taken to be Laplace's equation), homoge- 
neous boundary conditions on y = 0 and y = h, and an appropriate condition as x---> ~; the 
coefficients in the expansion are determined by the remaining boundary condition on x = 0. 

Two examples are of interest here, namely Havelock wavemakers and Westergaard dams. 
In both of these, the semi-infinite region is filled with incompressible, inviscid fluid, y = h is 
the bottom and y -- 0 is the mean free surface. Small oscillations of a vertical wavemaker at 
x = 0 will generate surface waves that radiate towards x = +~; the theory for this problem 
was given by Havelock [6]. Short-duration earthquakes will induce hydrodynamic pressures 
on the vertical face of a dam at x = 0; the theory for this problem (with a flat free surface, 
and also for compressible fluids) was given by Westergaard [31]. Both theories are described 
in text-books; see, e.g. Dean and Dalrymple [3, §6.3] for Havelock's theory, and Newmark 
and Rosenblueth [18, §6.2] for Westergaard's theory. 

Suppose, now, that the end-wall (i.e. the wavemaker or the dam face) is not plane and 
vertical, so that the fluid region is no longer rectangular. We still have our set of 
eigenfunctions, each one of which satisfies all conditions of the boundary-value problem, 
save one: can they be combined so as to satisfy the boundary condition on the end-wall? In 
other words, can the solution of the boundary-value problem be represented everywhere in 
the fluid, as a convergent series of 'rectangular' eigenfunctions with coefficients determined 
by the end-wall boundary condition? In general, we have a negative answer. However, for 
some geometries and for some forcings, the representation is valid. In this paper, we give a 
method for determining the allowable geometries and forcings. This method is an adaptation 
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of a method due to van den Berg and Fokkema [30] for determining the limitations of the 
so-called Rayleigh hypothesis in the theory of gratings. 

Non-vertical wavemakers have recently attracted some attention. Raichlen and Lee [22] 
considered the generation of waves by a flat, inclined wavemaker, defined by 

x = ~ y .  (1.1) 

They used an integral-equation method, involving a simple Green's function and an 
approximate radiation condition. The same geometry has been considered by other authors, 
using rectangular eigenfunctions [10, 15, 32]. Other geometries have been considered using 
rectangular eigenfunctions [33], null-field methods [13, 21] and perturbation methods [10, 
21]. 

Non-vertical dams are of great practical importance. The effects of surface waves are 
usually neglected, leading to a Dirichlet condition on the free surface. For a flat inclined face, 
given by (1.1), there is an exact solution to the boundary-value problem, given by Chwang 
[2]. Rectangular eigenfunctions have been used to treat other geometries [1, 34]. 

All the methods mentioned above that use expansions in terms of appropriate rectangular 
eigenfunctions are discussed further in Section 9. 

2. Formulation of the problems 

Consider a semi-infinite channel, D, filled with water. The water has constant finite depth h. 
At one end, there is a wavemaker W. We suppose that W makes small time-harmonic 
oscillations, and are required to determine the amplitude of the waves radiated to infinity. 
We assume that the water is incompressible and inviscid, and that the motion is irrotational 
and two-dimensional. Hence, there exists a velocity potential Re{4~(x, y)e-i~°'}, where o~ is 
the radian frequency of oscillation, and (x, y) are Cartesian coordinates. We choose the 
latter so that the mean free surface and the horizontal bottom occupy portions of the lines 
y = 0 and y = h, respectively. We specify the shape of the wavemaker according to 

W= {(x, y): x = w(y),O<~y <~ h} ,  

and take the fluid domain as 

D = {(x, y): x > w(y) ,O<y < h} . 

Finally, we locate the origin so that 

O~w(y)<~c for O~<y~<h, 

whence the wavemaker is bounded by the two vertical lines x = 0 and x = c. 
We now formulate a boundary-value problem for ~b. 

Wavemaker problem 

Determine ~b(x, y) so that 

( 02 02) 
- -  + ,b(x, y ) =  0 Ox 2 ~y2 in the water D ; (2.1) 



o4) 
- 0 on the bottom y = h, x > w(h) ; 

Oy 

K~b + 0__~_~ = 0 on the free surface, y = 0 ,  x > w ( 0 )  ; 
Oy 

o4) 
- U on the wavemaker, W ; 

On 
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(2.2) 

(2.3) 

(2.4) 

and 

4~(x, 0 ) -  - i g  A e ik°x as x---~ + ~ .  (2.5) 
¢.O 

Here,  K = wZ/g, where g is the acceleration due to gravity; U(y) is the prescribed normal 
velocity on W; O/On denotes normal differentiation at a point on W in the direction from W 
into D; k 0 is the unique positive real root of the dispersion relation, 

K = k 0 tanh koh ; (2.6) 

and A is a complex constant whose magnitude gives the amplitude of the waves radiated to 
infinity. 

We assume that the Wavemaker Problem has at most one solution. This uniqueness 
assumption is known to be valid if 

w(y)~w(O)+ytan~m f o r 0 ~ y < - h ,  (2.7) 

where/3,,  = 44½ ° [27], but may also be valid for a wider class of geometries. 
We shall also consider the following special case of the Wavemaker Problem, obtained by 

formally letting K---~ ~c. 

Dam problem 

Determine 4~(x, y) so that 4~ satisfies (2.1), (2.2), (2.4), 

4~(x, 0) = 0 for x > w(0) (2.8) 

and 

4' ---~ 0 as x---~ + ~ .  (2.9) 

This problem arises when a rigid dam, with face W undergoes a constant horizontal 
acceleration in the x-direction, as the result of an earthquake. If the earthquake has a short 
duration, gravitational effects are negligible, i.e. the hydrodynamic pressure induced on the 
dam can be calculated by assuming that the free surface is flat. The physical quantity of most 
interest here is the pressure distribution on the dam; this is proportional to qb(w(y), y). 

3 .  H a v e l o c k  w a v e m a k e r  t h e o r y  

Havelock's classical theory [6, 29] gives the exact solution of the Wavemaker Problem when 
the wavemaker W is vertical, i.e. when w(y) = 0 for 0 ~< y ~< h. Separation of variables leads 



270 P.A. Martin 

to a set of Havelock wavemaker functions, (f~)m(X, y)} where 

~o(X, Y) = eikoXYo(y), 

Yo( Y) = Co cosh ko(h - y) ,  

C O = 2(2koh + sinh 2koh) -1/2 , 

k, are the positive real roots of 

K + k n tan k,h  = 0, 

- k n X  • ,(x, y) = e Y , ( y ) ,  

Y, (y) : C, cos A n (h - -  y ) ,  

C, = 2(2k,h + sin 2k,h)  -1/2 , 

(3.1) 

and n = 1, 2 , . . . .  The functions {(I)m} satisfy (2.1), (2.2), (2.3) and (2.5). The functions 
{Ym(Y)} (m = 0 ,  1,2 . . . .  ) are complete and orthogonal over 0 ~ < y ~  < h; the constants Cm 
were inserted so that 

f0 h 1 
Ym(y)Y~(y) dy = -~m ~rnn, (3.2) 

where 6ij is the Kronecker delta. 
For the vertical wavemaker at x = 0, we can write 

o o  

th(x, y) = ibo~o(X, y) + ~ b ,~ , (x ,  y) .  
n = l  

Applying the boundary condition (2.4), by differentiating term by term, and then using the 
orthogonality relation (3.2), we obtain 

-h 

b m = -  jo U(y )Ym(y )dy '  

for m = 0, 1, 2 . . . . .  In particular, the wave amplitude at infinity is 

LAI = (o /g)lb01 Co cosh koh. 

4. Westergaard's solution for a vertical dam 

Letting Kh-->~, we see that koh-->~, Yo(y)-->O for y > O ,  

7]" 
k,h---~ (2n - 1) -~ = A,h ,  

say, and 

(_11.+1 Y"(Y)'-'* ~h sin A.y.  

Now, consider a vertical dam at x = 0, and look for a solution in the form 

~b(x, y) = ~ b. e -anx sin A.y .  
n = l  

(4.1) 



Applying the boundary condition (2.4) gives 

U ( y ) - - -  ~ A~bnsinA~y,  O < y < h .  
n = l  
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(4.2) 

The orthogonality of {sin Any } over 0 < y < h then gives 

b ~ - Anh U( y) sin A~y dy .  

For example, if the dam moves horizontally as a rigid body, we have 

U(y)  = agloo , 

where a is a dimensionless constant, whence 

2ag 
b,, - o~hA~ " 

This result was obtained by Westergaard [31]. 
We note here that (4.2) is a Fourier quarter-range sine series: the function U(y) is first 

extended into h < y < 2h using U(y) = U(2h - y), and then into - 2 h  < y < 0 using U(y) = 
- U ( - y ) .  This extended function will be discontinuous at y = 0 (unless U(0)--0),  whence 
Gibb's phenomenon will be present. This feature is quite clear in numerical experiments; see 
Figure 11 in [25]. 

5. The Rayleigh hypothesis 

Suppose, now, that the wavemaker W is not vertical. Can we still write 

~c 

,;b(x, y) = iboOPo(X, y) + ~ brian(x, y ) ,  
n = l  

(5.1) 

where the series is uniformly convergent for all points (x, y) E D U W? If so, we can apply 
the boundary condition (2.4) by differentiating term by term, and then try to determine the 
coefficients b n (n = 0, l ,  2 , . . . ) ,  perhaps by collocation ('point-matching') or a Galerkin 
method; see Section 9 and [20, §1.2.8]. 

We call the assumption that (5.1) is a valid representation for 4, in D tO W the Rayleigh 
hypothesis, as Rayleigh [23, §272a], [24], made a similar assumption in his work on acoustic 
scattering by a grating (an infinite, periodic corrugated surface). The Rayleigh hypothesis has 
generated a large literature since it was first questioned by Lippmann [11]; for a review, see 
[16]. 

It is known that the Rayleigh hypothesis is valid for some, but not all, geometries. 
Conditions for its validity have been devised by Hill and Celli [7], van den Berg and 
Fokkema [30], DeSanto [4], Schlup [26], Maystre and Cadilhac [14] and Millar [17]. In this 
paper, we show that the method of van den Berg and Fokkema can be adapted to the 
Wavemaker Problem and to the Dam Problem. 
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6. Expansion beyond x = c 

It is clear that we can expand ~b(x, y) as (5.1) for x/> c: one merely imagines that there is a 
vertical wavemaker at x = c, with a certain (unknown) variation of 04~/Ox over x = c. Indeed, 
this observation is behind the so-called 'equivalent wavemaker method' ,  where one tries to 
make plausible choices for OCb/~x [5]. 

So, suppose that we write 

4~(x, y) = i/~o(X, y) + ~ /~ dp.(x, y ) ,  
n = l  

(6.1) 

for x >i c. Then the uniqueness theorem for the Wavemaker Problem implies that 

/~. = bn ,  n = 0 , 1 , 2  . . . .  (6.2) 

This is not a trivial result, for we can obtain explicit formulae for the coefficients in (6.1), in 
terms of the boundary values of ~b and O4~/On on W, whereas the expansion (5.1) may not 
converge on W. 

We begin with the fundamental solution (Green's function) G, defined by 

1 
G(x, y; ~, 7) = ~ log 

(x - ~)2 + (y _ 7)2 

( x -  ~)2 + (y  + 7)2 

cosh k(h - y)cosh k(h - 7) 
cosh kh( k sinh kh - K cosh kh ) 

cos k(x - ~) dk 

- 2 ~o e-kh sinh ky sinh k7 
k cosh kh 

cos k(x - ~ ) dk , 

where the path of integration passes below the pole of the integrand at k = k 0 [9]. 
G(x, y; ~, 7) is the potential at (x, y) due to a simple wave source at (~:, 7) in an infinite 
channel, { - ~  < x < ~, 0 < y < h}. G has the bilinear expansion [9, 13] 

G(x, y; ~,7)= -rr ~ Olm(~,7)fDm(X, y) 
m = 0  

(6.3) 

for 0 < ~ < x, where 

ao(~, 7) = i e-i*°¢Y0(7), a,,(£, 7) = ek"eY,,(r/) 

and n = 1, 2 . . . . .  An application of Green's theorem in D to 4, and G gives 

2~-~b(P) = fw { Oqb(q) G(P, q) - 4~(q) ~ G(P, q)} dSq, (6.4) 
0 

where P = (x, y) is a point in D (not on W), q = (~, 7) is a point on W and c~/Onq denotes 
normal differentiation at q. If we restrict P so that x > c, we can use (6.3) in (6.4); (6.1), 
(6.2) and (2.4) then give 

1 
- U a o )  d s  (6.5)  ib o ~ fw ( d~ Oa° ! 



and 

1 
- Uam) ds bm ~ fw (4~ °am = 

for m = 1,2 . . . . .  
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(6.6) 

7. Application of the method of van den Berg and Fokkema 

We now determine sufficient conditions for the uniform convergence of (5.1) in the region 
x >i 0 (this region contains D U W). First, it is convenient to extend the Wavemaker Problem 
by reflection across the bottom, so that qS(x, y) and w(y) are symmetric about y = h. This 
leads to a boundary-value problem in the extended domain 

D e = {(x, y): x > w(y),O<y < 2 h } ,  

with w(0)=  w(2h). We also assume here that w'(y) is continuous for 0 ~< y ~<2h, except 
possibly for some isolated points on x = 0; as we shall see, the Rayleigh hypothesis is 
definitely false if this condition is not met. 

By the 'root test', the series (5.1) will be uniformly convergent for x />0,  0 ~  < y ~< h, if 

lim sup Ib,~,(O, y)[~/" < 1. (7.1) 

For large n, k,h = nrr + O(1/n) whence C, = O(n -1/2) and so (7.1) reduces to 

lim s u p  ]bnl l/n < 1. (7.2) 

If this holds, we can differentiate (5.1) term by term and apply the boundary condition (2.4) 
to give 

bn~ , ( y ) = f ( y ) ,  0 < y < 2 h ,  (7.3) 
n=0 

where 

? ( y )  = u ( y ) ~ / 1  + (w ' (y ) )  2 , 

• n ( y )  = - k . C .  e k"w(Y){cos k . ( h  - y )  - w ' ( y )  sin k , , ( h  - y)} 

for n = 1 , 2 , . . . ,  and ~0 is defined similarly. 
Next, we determine the behaviour of b n for large n, so that we can test (7.2). We do this 

by extending (7.3) to complex values of y. Let us extend into the lower half-plane, 
Im(y)  ~< 0. In this half-plane, 

l im  I % ( y ) l  ~J" = I ~ ( y ) l ,  (7.4)  

where 

((y)=exp{-~ ( i y -  w(y))} (7.5) 
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and we have used the estimate knh ~ nTr for large n. So, instead of (7.3), it is natural to 
consider the power series 

E bn~ n = F ( f f ) ,  (7 .6)  
n = 0  

say, in the complex if-plane. The radius of convergence of this series is R, where 

R -1 = lim sup Ib.I 1'" < 1,  (7.7) 

if (7.2) holds, i.e. we need R > 1. 
Note  that we could have extended (7.3) into the upper half-plane, Im(y)I> 0. This would 

lead to the replacement of ff in (7.4) and (7.6) with ~, say, where 

g(Y)=exp{-  h (iy+ w(Y)) } • 

However ,  since w(y)  is real for real y, its analytic continuations into the complex y-plane 
satisfy w()7)= ~ (y ) .  Hence,  Ill--I 1, and so both power series have the same radius of 
convergence. Thus, it is sufficient to consider only Im(y)~< 0. 

Now, the formula (7.5) defines a mapping from the strip 

S = {0 ~< Re (y )  ~< 2h, Im(y)  ~< 0} (7.8) 

into the if-plane. This mapping is conformal except where if' = 0 or if' = ~, i.e. where 

i -  w'(y)=O (7.9) 

or at singularities of w(y).  The image in the if-plane of the line {0 ~< R e ( y )  ~< 2h, Im(y)  = 0} 
(these values of y correspond to the extended wavemaker) is a closed curve C, symmetric 
about  Im(if) = 0. On this curve, 1, whence C is strictly contained inside CR, the circle 
of convergence of (7.6), if (7.2) holds. 

C R passes through the singularity of the power series (7.6) that is closest to ff = 0, at if(y0), 
say. Thus, y = Y0 is either a singularity of w(y), or a singularity o f f ( y )  or a zero of ff '(y); 
the latter are given by (7.9) as 

i -  w' (y0)  = 0 ,  Im(y0) ~<0. (7.10) 

Then, R = I ff(y0)] and so (7.7) gives 

lim sup [bn[ 1/~ = I ff(Y0)l- ' ,  
n .--.) oo 

which describes the behaviour of b n for large n, if the Rayleigh hypothesis is valid; this will 
be the case if (7.7) holds, i.e. if 

Re{iy 0 - W(yo) ) > O, 

where Y0 solves (7.10). 
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Rather than dealing with inequalities, it is convenient to consider a family of wavemakers, 
given by 

w(y) = c f f (y ) ,  

say, where [ff(y)[ ~< 1. Suppose that Cma x is the smallest value of c for which 

Re{iy 0 - c~(y0) } = 0.  (7.11) 

Then it can be shown ([30], p. 30) that the Rayleigh hypothesis holds for 0 ~< c < c .... and 

fails for c i> Cma x. 

7.1. Summary 

Suppose that w(y)  and f ( y )  are regular in the strip S, defined by (7.8); this is usually the 
case. Then, there are two equations to be solved, namely (7.10) and (7.11): 

i - c ~ ' ( y o )  = 0,  (7.12) 

Re{iy0 - eft(y0)} -- 0.  (7.13) 

These are to be solved in the strip S for c and Y0; since they are linear in c, eliminate c and 
solve for Y0. For each Y0, determine c and set Cma x to be the smallest of these values. Then, 
the Rayleigh hypothesis is valid for O<~c<c . . . .  and the series (5.1) will converge 
everywhere in the fluid and on the wavemaker itself. 

8. Examples 

In this section, we apply the foregoing theory to some particular wavemaker geometries. In 
all cases, w(y) is regular. If W is subjected to a rigid-body motion, for example, then f ( y )  is 
regular too. 

E X A M P L E  1. Suppose that W is given by 

x = w(y)  = ½c(1 + cos/x,y) ,  (8.1) 

where c/>0,  /x t = lcr/h and l is a positive integer. For example, if l--- 1, this wavemaker is 
one half of one period of a cosine curve, meeting the free surface perpendicularly at (c, 0) 
and meeting the bottom perpendicularly at (0, h). 

Equations (7.12) and (7.13) become 

i + i c~ t sin/xty o = 0 

Set 

/x/y 0 = - i Y  + 2m~-, 

and Re{iy o -  ½c-  ½c cos /Xtyo} = 0.  

m = 0 , 1  . . . . .  l ,  



276 P.A. Martin 

where Y is real and positive; this gives all the singularities in the strip S. We obtain 

2 = c/x t sinh Y and 2Y -- c/xt(cosh Y + 1) .  

Eliminating c gives 

Y sinh Y = cosh Y + 1. 

This has one positive root at 

Y = 1.5434, 

whence 

(8.2) 

For l = 1, this condition is the same as for acoustic scattering by a grating of the form 

(8.1); see, e.g. [16]. In this case, w(y) has period 2h. For higher (integer) values of l, w(y) 
has period 2h/l. In acoustics, one would use eigenfunctions with the same periodicity (in y) 
as the geometry,  because the acoustic field also has this property. This leads to 

Cmax 
0.2850, 

h/l 

i.e. to (8.3) again. For water waves, one uses eigenfunctions determined by the depth of 
water (the potential is not periodic in y!) ,  leading to (8.3). 

E X A M P L E  2. Suppose that we change the sign in (8.1) to give 

w(y) = lc(1 - cos/x,y) 

with c and /x  t as for Example 1. The singularities are now given by 

i x t y o = - i Y + ( 2 m +  l)~r, m = 0 , 1 , . . . , l - 1 ,  

where,  as before,  Y is given by (8.2) and Cma x is given by (8.3). 

E X A M P L E  3. Let  us return to Example 1, but now allow l to be real, with 0 < l < 1. Thus, 
we consider a wavemaker W given by 

cos I~ty - cos lTr 
w(y)  = c 1 - cos llr (8.4) 

As before,  W meets the free surface perpendicularly at (c, 0); it meets the bottom at (0, h), 
but not perpendicularly: w ' ( h ) = - ~ t c c o t ( l ~ / 2 ) < O .  Note that w ' (y) ,  as defined for h <  
y < 2h by reflection and then for all y by periodicity, is continuous for all y except at 
y = (2n + 1)h (n = 0, ---1, -+2 , . . . ) ,  where x = 0. This means that C has a corner at ~ = - 1 ,  
but is otherwise smooth and strictly contained within I ffl = 1. Hence,  the series (5.1) will be 

¢max 0.2850 
h - l , l = 1 , 2 , . . .  (8.3) 
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convergent everywhere on W, except at the single point (x, y) = (0, h), provided there is no 
other singularity inside I~[ = 1 (otherwise C R would be smaller than [~'l= 1). The location of 

this singularity depends on l. It is on [~'l = 1 if c and/~tY0 = -iY~ satisfy 

(1 - cos lTr) = cp~ t sinh Y/ and (1 - cos l r r )Y  t = c/xl(cosh Yt - cos 17r). 

Eliminating c gives 

Yl sinh I1l = cosh I I / -  cos lTr. 

For example, if l = ½, we find that I1/ -  1.1997 and 

Cmax = 0.4219 (l = 1) .  (8.5) 
h 

E X A M P L E  4. Extending Example 2 to real values of l, with 0 < l < 1, we consider 

w(y) = c 
1 - cos/xty 
1 - c o s  l ~  ' 

W meets the free surface perpendicularly at the origin; it meets the bottom at (c, h), but not 
perpendicularly. As in Example 3, there is a discontinuity in w ' ( y )  at y = h, but now it 
occurs where x ¢ 0. This leads to an entirely different situation. For C touches I~'[= 1 at 
~'= +1, and has a corner at ~ ' = - e x p { - c r r / h }  = ~c, say. Since points on C satisfy I~'c] ~< 

1,  and the series (7.6) diverges for = w e  s e e  that the series (5.1) diverges 

everywhere on W. 

E X A M P L E  5. Consider the parabolic form for W given by 

w ( y )  = cy(2h - y ) / h  2 . (8.6) 

W meets the bottom perpendicularly at ( c ,  h ) .  For this geometry, we can find Y0 explicitly. It 

is given by 

Yo = h - I i h 2 / c  , 

whence 

C . . . .  1 (8.7) 
h 2"  

This result was also obtained by DeSanto [4, Example 3] for acoustic scattering by a grating. 
Note that (8.6) and (8.4) with l = i are similar curves, and so we expect the numerical values 
for c . . . .  /h, given by (8.7) and (8.5), respectively, to be similar. 

E X A M P L E  6. For the quartic form, 

w ( y )  = c y 2 ( 2 h  - y ) 2 / h  4 , 
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W meets both the bottom and the free surface perpendicularly. Again, we can find Yo 
explicitly: 

Yo = h(1 - i3 1/2) 

exactly, whence 

Cma x 3V~ 
- -  - = 0.3248. 

h 16 

9. Numerical methods 

Suppose that the Rayleigh hypothesis is valid for a given W and U. Then, we can expect that 
a simple method, such as collocation, could be used to compute b, in (5.1). Thus, with 

N 

EN(Y ) = ~ b, ,(N)*,(y)-f(y) 
n = O  

(the coefficients b,,(N) will vary with N),  solve 

EN(Yn)=O , n = 0 , 1 , 2 , . . . , N ,  

where (w(yn),  y , ) ,  n = 0, 1, 2 . . . .  , N, are points on W. 
Suppose, now, that the Rayleigh hypothesis is not valid. Then, a simple collocation 

method is unlikely to succeed: typically, EN(y ) will not be small when y C Yn. In this 
situation, other numerical schemes have been tried. Wu [32, 33] has collocated at M points, 
with M > N, leading to an overdetermined system, which he solved in a least-squares sense: 
in [32], he used N = 5 and M = 20 for an inclined flat wavemaker; in [33], he used N = 15 
and M = 200 for a heaving wedge; in both cases, he presented results for the wave amplitude 
at infinity. Kachoyan and McKee [10] have used a Galerkin scheme, in which they solved 

fhEN(Y)Xn(y )dy=O, n = 0 , 1 , 2 , . . . , N ;  (9.1) 

they chose 

X. (y)  = V. (y) ,  

the vertical eigenfunctions defined in Section 3. They considered the inclined flat wave- 
maker,  given by 

w ( y )  = 

(with a = c/h), and found that their method did not converge for a > 1. Later, McKee [15] 
obtained results up to a = 1.25 by using a Shanks transform. 

A different choice for X n in (9.!) is 

i 2 1 / 2  X.(y) = (1 + (w ( y ) ) ) -  * n ( y ) ,  
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where the overbar denotes the complex conjugate. This choice is equivalent to satisfying the 
boundary condition (2.4) in a least-squares sense, i.e. to minimizing 

fw N~o 0 U( q) 2 fl N = bn(N ) ~ *n( q) -- ds q . 

This approach has been used for various dam problems by Avilds and Sfinchez-Sesma [1, 25] 
and by Wu and Yu [34]. It has a theoretical basis; see, e.g. Millar [16] and Ikuno and Yasuura 
[8]. Thus, completeness of {(O/Onq)~,(q)} (for expanding functions defined on W, in 
L2(W)) can be proved, using methods described in [12]. This means that there exist 
coefficients bn(N ) such that fiN---~0 as N---~ ~c. The coefficients satisfy 

b.(N)--~b~ as N - - - ~ ,  

where bn are defined by (6.5) and (6.6) and give the expansion for th(x, y) in x/> c; in 
particular, this method yields a convergent approximation to the wave amplitude at infinity 
(proportional to b0). Finally, the approximation 

N 

ibo~0(x, Y) + ~ b,(N)~n(X, Y) 
n = l  

converges uniformly in all closed subsets of D. These results are independent of the Rayleigh 
hypothesis (they do require uniqueness for the boundary-value problem). All these aspects 
of the least-squares method are clearly described in Millar's well-known paper [16], although 
they bear repetition here. The theory requires (i) that W and its extension is smooth, and (ii) 
that the integration in (9.1) is performed exactly. The numerical experiments in [1, 25, 34] 
are for dams whose geometries violate (i); non-uniform behaviour of EN(y) was observed 
(see Figures 13 and 15 in [25]). For wavemakers, (ii) will be violated; guides for numerical 
evaluation in related problems are given in [8]. The effects of corners have also been 
analysed, in the context of the method of least squares for acoustic scattering by a cylinder, 
by Okuno and Yasuura [19]; similar considerations should be useful for the present 
problems. 

I0. Discussion and conclusions 

For some non-vertical wavemakers, we have shown that the potential can be expanded as a 
convergent series of Havelock wavemaker functions, everywhere in the water and (almost) 
everywhere on the wavemaker itself. The allowable geometries and forcings can be 
determined by a simple extension of known methods for testing the Rayleigh hypothesis in 
acoustics. 

Similar techniques should be applicable to some other related water-wave problems. For 
example, Ursell [28] used his multipole potentials to expand the potential everywhere 
outside a heaving half-immersed circular cylinder. Can the same set of multipoles be used to 
expand the potential everywhere outside cylinders of other cross-sections? Results similar to 
those described by Millar [16] are to be expected. 

Finally, we observe that all of our results are applicable, unchanged, to the Dam Problem. 
This is because knh and Anh, defined by (3.1) and (4.1), respectively, both grow like nTr as 
n ---~ oo. 
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